- (A) Steam pressure for steam boilers—Test must be made at atmospheric pressure or at a pressure not exceeding 2 psig. - (B) Water temperature for hot water boilers—The inlet temperature must be 35 °F to 80 °F, except that when a boiler is tested in the field after installation the inlet temperature may be as recommended by the manufacturer, but must not exceed 140 °F. The outlet temperature shall be 180 °F ±2 °F. - (C) After steady state operation is achieved, the minimum duration of a test run shall be 30 minutes. - (2) Test Measurements. Use the test procedure from Section 5, Efficiency by Heat Loss Method, of ASME PTC 4.1 (Incorporated by reference, see § 431.85). Use the test conditions as specified in paragraph (d)(1) of this section. For a boiler that is capable of supplying either steam or hot water, follow paragraph (c)(2)(iii) of this section. - (3) Calculation of Combustion Efficiency. Use the heat loss method for gas or oil fuel as specified in Section 7.3 and the Test Forms for the Abbreviated Efficiency Test, PTC 4.1-a (Summary Sheet) and PTC 4.1-b (Calculation Sheet), of ASME PTC 4.1 to determine the combustion efficiency, except that the following specific heat loss terms (as listed in Section 7.3 of ASME PTC 4.1) to 0: sections 7.3.2.03 (moisture in fuel), 7.3.2.01 (combustible in dry refuse), 7.3.2.10 (radiation to surroundings), 7.3.2.05 through 7.3.2.09 and 7.3.2.11 through 7.3.2.14 (unmeasured losses) must be set. (Incorporated by reference, see § 431.85) ### ENERGY EFFICIENCY STANDARDS # § 431.87 Energy conservation standards and their effective dates. Each manufacturer of a commercial packaged boiler manufactured on or after January 1, 1994, must meet the following energy efficiency standard levels: - (a) For a gas-fired packaged boiler with a capacity (rated maximum input) of 300,000 Btu/hr or more, the combustion efficiency at the maximum rated capacity must be not less than 80 percent. - (b) For an oil-fired packaged boiler with a capacity (rated maximum input) of 300,000 Btu/hr or more, the combustion efficiency at the maximum rated capacity must be not less than 83 percent. # Subpart F—Commercial Air Conditioners and Heat Pumps Source: 69 FR 61969, Oct. 21, 2004, unless otherwise noted. #### § 431.91 Purpose and scope. This subpart specifies test procedures and energy conservation standards for certain commercial air conditioners and heat pumps, pursuant to Part C of Title III of the Energy Policy and Conservation Act, as amended, 42 U.S.C. 6311-6316. #### § 431.92 Definitions concerning commercial air conditioners and heat pumps. The following definitions apply for purposes of this subpart F, and of subparts J through M of this part. Any words or terms not defined in this section or elsewhere in this part shall be defined as provided in 42 U.S.C. 6311. Coefficient of Performance, or COP means the ratio of the produced cooling effect of an air conditioner or heat pump (or its produced heating effect, depending on the mode of operation) to its net work input, when both the cooling (or heating) effect and the net work input are expressed in identical units of measurement. Energy Efficiency Ratio, or EER means the ratio of the produced cooling effect of an air conditioner or heat pump to its net work input, expressed in Btu/watt-hour. Heating seasonal performance factor, or HSPF means the total heating output of a central air-conditioning heat pump during its normal annual usage period for heating, expressed in Btu's and divided by the total electric power input, expressed in watt-hours, during the same period. Large commercial package air-conditioning and heating equipment means air-cooled, water-cooled, or evaporatively cooled electrically operated, unitary central air conditioners and central air-conditioning heat pumps for commercial application that are rated at or above 135,000 Btu per hour and #### §431.95 below 240,000 Btu per hour (cooling capacity), and that are industrial equipment. Packaged terminal air conditioner means a wall sleeve and a separate unencased combination of heating and cooling assemblies specified by the builder and intended for mounting through the wall, and that is industrial equipment. It includes a prime source of refrigeration, separable outdoor louvers, forced ventilation, and heating availability by builder's choice of hot water, steam, or electricity. Packaged terminal heat pump means a packaged terminal air conditioner that utilizes reverse cycle refrigeration as its prime heat source, that has a supplementary heat source available, with the choice of hot water, steam, or electric resistant heat, and that is industrial equipment. Seasonal energy efficiency ratio or SEER means the total cooling output of a central air conditioner or central air-conditioning heat pump, expressed in Btu's, during its normal annual usage period for cooling and divided by the total electric power input, expressed in watt-hours, during the same period. Single package unit means any central air conditioner or central air-conditioning heat pump in which all the major assemblies are enclosed in one cabinet. Small commercial package air-conditioning and heating equipment means air-cooled, water-cooled, evaporatively cooled, or water-source (not including ground water-source) electrically operated, unitary central air conditioners and central air-conditioning heat pumps for commercial application which are rated below 135,000 Btu per hour (cooling capacity), and which are industrial equipment. Split system means any central air conditioner or central air conditioning heat pump in which one or more of the major assemblies are separate from the others. ## TEST PROCEDURES ## § 431.95 Materials incorporated by reference. (a) The Department incorporates by reference the following test procedures into subpart F of part 431. The Director of the Federal Register has approved the material listed in paragraph (b) of this section for incorporation by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Any subsequent amendment to this material by the standard-setting organization will not affect the Department test procedures unless and until the Department amends its test procedures. The Department incorporates the material as it exists on the date of the approval and a notice of any change in the material will be published in the FEDERAL REGISTER. - (b) List of test procedures incorporated by reference. (1) Air-Conditioning and Refrigeration Institute (ARI) Standard 210/240-2003 published in 2003, "Unitary Air-Conditioning and Air-Source Heat Pump Equipment," IBR approved for § 431.96. - (2) ARI Standard 340/360-2000 published in 2001, "Commercial and Industrial Unitary Air-Conditioning and Heat Pump Equipment," IBR approved for § 431.96. - (3) International Organization for Standardization (ISO) International Standard ISO 13256-1 published in 1998, "Water-source heat pumps—Testing and rating for performance—Part 1: Water-to-air and brine-to-air heat pumps," IBR approved for §431.96. - (4) ARI Standard 310/380–2004 (CSA-C744–04) published in 2004, "Standard for Packaged Terminal Air-Conditioners and Heat Pumps," IBR approved for §431.96. - (c) Availability of references. (1) Inspection of test procedures. You may inspect the test procedures incorporated by reference at: - (i) National Archives and Records Administration (NARA). For information on the availability of this material at NARA, call 202-741-6030, or go to: http://www.archives.gov/ federal_register/ code_of_federal_regulations/ ibr_locations.html. (ii) U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Hearings and Dockets, "Test Procedures and Efficiency Standards for Commercial Air Conditioners and Heat Pumps," Docket No. EE-RM/TP-99-460, 1000 Independence Avenue, SW., Washington, DC 20585.